

1.5 Graphs of Functions

The graph of a function f is the collection of ordered pairs (x, f(x)) where x is in the domain of f.

The **domain** of the graph is the set of *x* values for which a corresponding *y* value exists.

The **range** of the graph is the set of *y* values which correspond to the *x* values in the domain.

Example: Find the domain and range of the function $f(x) = \sqrt{x+3}$ from its graph.

The domain is $[-3,\infty)$.

```
The range is [0,\infty).
```

Vertical Line Test

A relation is a **function** if no vertical line intersects its graph in more than one point.

This graph does **not** pass the vertical line test. **It is <u>not</u> a function**. This graph passes the vertical line test. It is a function.

y = x - 1

X

Graph the following on the same graph

Graph y = -x from $-\infty$ to 0.

Graph y = x from 0 to ∞ .

$$f(x) = \begin{cases} -x, \ x \le 0\\ x, \ x \ge 0 \end{cases}$$

Copyright © by Houghton Mifflin Company, Inc. All rights reserved.

4

A **piecewise-defined function** is composed of two or more functions.

 $f(x) = \begin{cases} 3 + x, x < 0 & \text{Use when the value of } x \text{ is less than } 0. \\ x^2 + 1, x \ge 0 & \text{Use when the value of } x \text{ is greater or} \end{cases}$ equal to 0. **open circle** (0 is not included closed circle (0 is included.)

Zeros of a Function

- The zeros of a function are the x-values for which f(x) or y = 0.
- They are the
 - x-intercepts.

Relative Maximum and Minimum Values

The graph of y = f(x):

• increases on $(-\infty, -3)$,

(-3, 6)

3,

(4)

- **decreases** on (-3, 3),
- increases on $(3, \infty)$.

Classwork

Page 61 #1-5, 7, 26, 27, 44, 45 Find D, R, Inc, Dec, Min, Max

Homework

• Pg 61 # 6, 8- 20, 22, 24, 31-38